
PyLandStats Documentation
Release 2.0.0

Martí Bosch

Nov 19, 2019

REFERENCE GUIDE:

1 Landscape analysis 3

2 Spatiotemporal analysis 11

3 Zonal analysis 13

4 Spatiotemporal buffer analysis 19

5 Using PyLandStats 23

6 Indices and tables 25

Index 27

i

ii

PyLandStats Documentation, Release 2.0.0

Open-source Pythonic library to compute landscape metrics within the PyData stack (NumPy, pandas, matplotlib. . .)

REFERENCE GUIDE: 1

PyLandStats Documentation, Release 2.0.0

2 REFERENCE GUIDE:

CHAPTER

ONE

LANDSCAPE ANALYSIS

1.1 List of implemented metrics

The metrics of PyLandStats are computed according to its definitions in FRAGSTATS.

The notation for the metrics below is as follows:

• the letters with suffixes 𝑎𝑖,𝑗 , 𝑝𝑖,𝑗 , ℎ𝑖,𝑗 respectively represent the area, perimeter, and distance to the nearest
neighboring patch of the same class of the patch 𝑗 of class 𝑖.

• the letters with suffixes 𝑒𝑖,𝑘, 𝑔𝑖,𝑘 respectively represent the total edge between and number of pixel adjacencies
between classes 𝑖 and 𝑘

• the capital letters 𝐴,𝑁,𝐸 respectively represent the total area, total number of patches and total edge of the
landscape

Like FRAGSTATS, PyLandStats features six distribution-statistics metrics for each patch-level metric, which consist
in a statistical aggregation of the values computed for each patch of a class or the whole landscape:

• the mean, which can be computed by adding a _mn suffix to the method name, e.g., area_mn

• the area-weighted mean, which can be computed by adding a _am suffix to the method name, e.g., area_am

• the median, which can be computed by adding a _md suffix to the method name, e.g., area_md

• the range, which can be computed by adding a _ra suffix to the method name, e.g., area_ra

• the standard deviation, which can be computed by adding a _sd suffix to the method name, e.g., area_sd

• the coefficient of variation, which can be computed by adding a _cv suffix to the method name, e.g., area_cv

note that the distribution-statistics metrics do not appear in the documentation below.

See the FRAGSTATS documentation for more information.

1.1.1 Patch-level metrics

Area, density, edge

Landscape.area(class_val=None, hectares=True)
The area of each patch of the landscape

𝐴𝑅𝐸𝐴 = 𝑎𝑖,𝑗 [ℎ𝑒𝑐] 𝑜𝑟 [𝑚]

Parameters

3

https://github.com/martibosch/pylandstats-notebooks/blob/master/notebooks/A01-fragstats-metrics-comparison.ipynb
https://www.umass.edu/landeco/research/fragstats/documents/fragstats_documents.html

PyLandStats Documentation, Release 2.0.0

• class_val (int, optional) – If provided, the metric will be computed for the cor-
responding class only, otherwise it will be computed for all the classes of the landscape

• hectares (bool, default True) – Whether the landscape area should be converted
to hectares (tends to yield more legible values for the metric)

Returns AREA – AREA > 0, without limit

Return type pd.Series if class_val is provided, pd.DataFrame otherwise

Landscape.perimeter(class_val=None)
The perimeter of each patch of the landscape

𝑃𝐸𝑅𝐼𝑀 = 𝑝𝑖,𝑗 [𝑚]

Parameters class_val (int, optional) – If provided, the metric will be computed for the
corresponding class only, otherwise it will be computed for all the classes of the landscape

Returns PERIM – PERIM > 0, without limit

Return type pd.Series if class_val is provided, pd.DataFrame otherwise

Shape

Landscape.perimeter_area_ratio(class_val=None, hectares=True)
The ratio between the perimeter and area of each patch of the landscape. Measures shape complexity, however it
varies with the size of the patch, e.g, for the same shape, larger patches will have a smaller perimeter-area ratio.

𝑃𝐴𝑅𝐴 =
𝑝𝑖,𝑗
𝑎𝑖,𝑗

[𝑚/ℎ𝑒𝑐] 𝑜𝑟 [𝑚/𝑚2]

Parameters

• class_val (int, optional) – If provided, the metric will be computed for the cor-
responding class only, otherwise it will be computed for all the classes of the landscape

• hectares (bool, default True) – Whether the area should be converted to
hectares (tends to yield more legible values for the metric)

Returns PARA – PARA > 0, without limit

Return type pd.Series if class_val is provided, pd.DataFrame otherwise

Landscape.shape_index(class_val=None)
A measure of shape complexity, similar to the perimeter-area ratio, but correcting for its size problem by adjust-
ing for a standard square shape.

𝑆𝐻𝐴𝑃𝐸 =
.25 𝑝𝑖,𝑗√

𝑎𝑖,𝑗

Parameters class_val (int, optional) – If provided, the metric will be computed for the
corresponding class only, otherwise it will be computed for all the classes of the landscape

Returns SHAPE – SHAPE >= 1, without limit ; SHAPE equals 1 when the patch is maximally
compact, and increases without limit as patch shape becomes more regular

Return type pd.Series if class_val is provided, pd.DataFrame otherwise

Landscape.fractal_dimension(class_val=None)
A measure of shape complexity appropriate across a wide range of patch sizes

𝐹𝑅𝐴𝐶 =
2 𝑙𝑛(.25 𝑝𝑖,𝑗)

𝑙𝑛(𝑎𝑖,𝑗)

4 Chapter 1. Landscape analysis

PyLandStats Documentation, Release 2.0.0

Parameters class_val (int, optional) – If provided, the metric will be computed for the
corresponding class only, otherwise it will be computed for all the classes of the landscape

Returns FRAC – 1 <= FRAC <=2 ; for a two-dimensional patch, FRAC approaches 1 for very
simple shapes such as squares, and approaches 2 for complex plane-filling shapes

Return type pd.Series if class_val is provided, pd.DataFrame otherwise

Aggregation

Landscape.euclidean_nearest_neighbor(class_val=None)
Distance to the nearest neighboring patch of the same class based on the shortest edge-to-edge distance

𝐸𝑁𝑁 = ℎ𝑖,𝑗 [𝑚]

Parameters class_val (int, optional) – If provided, the metric will be computed for the
corresponding class only, otherwise it will be computed for all the classes of the landscape

Returns ENN – ENN > 0, without limit ; ENN approaches 0 as the distance to the nearest neighbors
decreases

Return type numeric

1.1.2 Class-level and landscape-level metrics

Area, density, edge

Landscape.total_area(class_val=None, hectares=True)
Total area. If class_val is provided, the metric is computed at the class level as in:

𝑇𝐴𝑖 =

𝑛𝑖∑︁
𝑗=1

𝑎𝑖,𝑗 [ℎ𝑒𝑐] 𝑜𝑟 [𝑚] (𝑐𝑙𝑎𝑠𝑠 𝑖)

otherwise, the metric is computed at the landscape level as in:

𝑇𝐴 = 𝐴 [ℎ𝑒𝑐] 𝑜𝑟 [𝑚] (𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒)

Parameters

• class_val (int, optional) – If provided, the metric will be computed at the level
of the corresponding class, otherwise it will be computed at the landscape level

• hectares (bool, default True) – Whether the area should be converted to
hectares (tends to yield more legible values for the metric)

Returns TA

Return type numeric

Landscape.proportion_of_landscape(class_val, percent=True)
Measures the proportional abundance of a particular class within the landscape. It is computed at the class level
as in:

𝑃𝐿𝐴𝑁𝐷 =
1

𝐴

𝑛𝑖∑︁
𝑗

𝑎𝑖,𝑗

Parameters

1.1. List of implemented metrics 5

PyLandStats Documentation, Release 2.0.0

• class_val (int) – Class for which the metric should be computed

• percent (bool, default True) – Whether the index should be expressed as pro-
portion or converted to percentage. If True, this method returns FRAGSTATS’ percentage
of landscape (PLAND)

Returns PLAND – 0 < PLAND <= 100 ; PLAND approaches 0 when the occurrence of the corre-
sponding class becomes increasingly rare, and approaches 100 when the entire landscape con-
sists of a single patch of such class.

Return type numeric

Landscape.number_of_patches(class_val=None)
Number of patches. If class_val is provided, the metric is computed at the class level as in:

𝑁𝑃𝑖 = 𝑛𝑖 (𝑐𝑙𝑎𝑠𝑠 𝑖)

otherwise, the metric is computed at the landscape level as in:

𝑁𝑃 = 𝑁 (𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒)

Parameters class_val (int, optional) – If provided, the metric will be computed at the
level of the corresponding class, otherwise it will be computed at the landscape level

Returns NP – NP >= 1, without limit

Return type int

Landscape.patch_density(class_val=None, percent=True, hectares=True)
Density of class patches, which is arguably more useful than the number of patches since it facilitates comparison
among landscapes of different sizes. If class_val is provided, the metric is computed at the class level as in:

𝑃𝐷𝑖 =
𝑛𝑖

𝐴
[1/ℎ𝑒𝑐] 𝑜𝑟 [1/𝑚2] (𝑐𝑙𝑎𝑠𝑠 𝑖)

otherwise, the metric is computed at the landscape level as in:

𝑃𝐷 =
𝑁

𝐴
[1/ℎ𝑒𝑐] 𝑜𝑟 [1/𝑚2] (𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒)

Parameters

• class_val (int, optional) – If provided, the metric will be computed at the level
of the corresponding class, otherwise it will be computed at the landscape level

• percent (bool, default True) – Whether the index should be expressed as pro-
portion or converted to percentage

• hectares (bool, default True) – Whether the landscape area should be converted
to hectares (tends to yield more legible values for the metric)

Returns PD – PD > 0, constrained by cell size ; maximum PD is attained when every cell is a
separate patch

Return type numeric

Landscape.largest_patch_index(class_val=None, percent=True)
The proportion of total landscape comprised by the largest patch. If class_val is provided, the metric is computed
at the class level as in:

𝐿𝑃𝐼𝑖 =
1

𝐴

𝑛𝑖
max
𝑗=1

𝑎𝑖,𝑗 (𝑐𝑙𝑎𝑠𝑠 𝑖)

otherwise, the metric is computed at the landscape level as in:

𝐿𝑃𝐼 =
1

𝐴
max 𝑎𝑖,𝑗 (𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒)

6 Chapter 1. Landscape analysis

PyLandStats Documentation, Release 2.0.0

Parameters

• class_val (int, optional) – If provided, the metric will be computed at the level
of the corresponding class, otherwise it will be computed at the landscape level

• percent (bool, default True) – Whether the index should be expressed as pro-
portion or converted to percentage

Returns LPI – 0 < LPI <= 100 (or 0 < LPI <= 1 if percent argument is False) ; LPI approaches
0 when the largest patch of the corresponding class is increasingly small, and approaches its
maximum value when such largest patch comprises the totality of the landscape

Return type numeric

Landscape.total_edge(class_val=None, count_boundary=False)
Measure of the total edge length. If class_val is provided, the metric is computed at the class level as in:

𝑇𝐸𝑖 =

𝑚∑︁
𝑘=1

𝑒𝑖,𝑘 [𝑚] (𝑐𝑙𝑎𝑠𝑠 𝑖)

otherwise, the metric is computed at the landscape level as in:

𝑇𝐸 = 𝐸 [𝑚] (𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒)

Parameters

• class_val (int, optional) – If provided, the metric will be computed at the level
of the corresponding class, otherwise it will be computed at the landscape level

• count_boundary (bool, default False) – Whether the boundary of the land-
scape should be included in the total edge length

Returns TE – TE >= 0 ; TE equals 0 when the entire landscape and its border consist of the corre-
sponding class

Return type numeric

Landscape.edge_density(class_val=None, count_boundary=False, hectares=True)
Measure of edge length per area unit, which facilitates comparison among landscapes of different sizes. If
class_val is provided, the metric is computed at the class level as in:

𝐸𝐷𝑖 =
1

𝐴

𝑚∑︁
𝑘=1

𝑒𝑖,𝑘 [𝑚/ℎ𝑒𝑐] 𝑜𝑟 [𝑚/𝑚2] (𝑐𝑙𝑎𝑠𝑠 𝑖)

otherwise, the metric is computed at the landscape level as in:

𝐸𝐷 =
𝐸

𝐴
[𝑚/ℎ𝑒𝑐] 𝑜𝑟 [𝑚/𝑚2] (𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒)

Parameters

• class_val (int, optional) – If provided, the metric will be computed at the level
of the corresponding class, otherwise it will be computed at the landscape level

• count_boundary (bool, default False) – Whether the boundary of the land-
scape should be considered

• hectares (bool, default True) – Whether the landscape area should be converted
to hectares (tends to yield more legible values for the metric)

Returns ED – ED >= 0, without limit ; ED equals 0 when the entire landscape and its border consist
of the corresponding patch class.

Return type numeric

1.1. List of implemented metrics 7

PyLandStats Documentation, Release 2.0.0

Aggregation

Landscape.landscape_shape_index(class_val=None)
Measure of class aggregation that provides a standardized measure of edginess that adjusts for the size of the
landscape. If class_val is provided, the metric is computed at the class level as in:

𝐿𝑆𝐼𝑖 =

.25
𝑚∑︀

𝑘=1

𝑒𝑖,𝑘
√
𝐴

(𝑐𝑙𝑎𝑠𝑠 𝑖)

otherwise, the metric is computed at the landscape level as in:

𝐿𝑆𝐼 =
.25𝐸√

𝐴
(𝑙𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒)

Parameters class_val (int, optional) – If provided, the metric will be computed at the
level of the corresponding class, otherwise it will be computed at the landscape level

Returns LSI – LSI >=1 ; LSI equals 1 when the entire landscape consists of a single patch of
the corresponding class, and increases without limit as the patches of such class become more
disaggregated.

Return type float

1.1.3 Landscape-level metrics

Contagion, interspersion

Landscape.contagion(percent=True)
Measure of aggregation that measures the probability that two random adjacent cells belong to the same class.
It is computed at the landscape level as in:

𝐶𝑂𝑁𝑇𝐴𝐺 = 1 +

𝑚∑︀
𝑖=1

𝑚∑︀
𝑘=1

[︃
𝑃𝑖

𝑔𝑖,𝑘
𝑚∑︀

𝑘=1

𝑔𝑖,𝑘

]︃[︃
𝑙𝑛

(︃
𝑃𝑖

𝑔𝑖,𝑘
𝑚∑︀

𝑘=1

𝑔𝑖,𝑘

)︃]︃
2𝑙𝑛(𝑚)

Parameters percent (bool, default True) – Whether the index should be expressed as
proportion or converted to percentage

Returns CONTAG – 0 < CONTAG <= 100 ; CONTAG approaches 0 when the classes are maxi-
mally disaggregated (i.e., every cell is a patch of a different class) and interspersed (i.e., equal
proportions of all pairwise adjacencies), and approaches its maximum when the landscape con-
sists of a single patch.

Return type float

Landscape.shannon_diversity_index()
Measure of diversity that reflects the number of classes present in the landscape as well as the relative abundance
of each class. It is computed at the landscape level as in:

𝑆𝐻𝐷𝐼 = −
𝑚∑︁
𝑖=1

(︁
𝑃𝑖 𝑙𝑛𝑃𝑖

)︁
Returns SHDI – SHDI >= 0 ; SHDI approaches 0 when the entire landscape consists of a single

patch, and increases as the number of classes increases and/or the proportional distribution of
area among classes becomes more equitable.

Return type float

8 Chapter 1. Landscape analysis

PyLandStats Documentation, Release 2.0.0

1.2 Computing metrics data frames

Landscape.compute_patch_metrics_df(metrics=None, metrics_kws={})
Computes the patch-level metrics

Parameters

• metrics (list-like, optional) – A list-like of strings with the names of the met-
rics that should be computed. If None, all the implemented patch-level metrics will be
computed.

• metrics_kws (dict, optional) – Dictionary mapping the keyword arguments (val-
ues) that should be passed to each metric method (key), e.g., to compute area in meters
instead of hectares, metric_kws should map the string ‘area’ (method name) to {‘hectares’:
False}. The default empty dictionary will compute each metric according to FRAGSTATS
defaults.

Returns df – Dataframe with the values computed for each patch (index) and metric (columns)

Return type pd.DataFrame

Landscape.compute_class_metrics_df(metrics=None, classes=None, metrics_kws={})
Computes the class-level metrics

Parameters

• metrics (list-like, optional) – A list-like of strings with the names of the met-
rics that should be computed. If None, all the implemented class-level metrics will be com-
puted.

• classes (list-like, optional) – A list-like of ints or strings with the class values
that should be considered in the context of this analysis case

• metrics_kws (dict, optional) – Dictionary mapping the keyword arguments (val-
ues) that should be passed to each metric method (key), e.g., to exclude the boundary from
the computation of total_edge, metric_kws should map the string ‘total_edge’ (method
name) to {‘count_boundary’: False}. The default empty dictionary will compute each met-
ric according to FRAGSTATS defaults.

Returns df – Dataframe with the values computed for each class (index) and metric (columns)

Return type pd.DataFrame

Landscape.compute_landscape_metrics_df(metrics=None, metrics_kws={})
Computes the landscape-level metrics

Parameters

• metrics (list-like, optional) – A list-like of strings with the names of the met-
rics that should be computed. If None, all the implemented landscape-level metrics will be
computed.

• metrics_kws (dict, optional) – Dictionary mapping the keyword arguments (val-
ues) that should be passed to each metric method (key), e.g., to exclude the boundary from
the computation of total_edge, metric_kws should map the string ‘total_edge’ (method
name) to {‘count_boundary’: False}. The default empty dictionary will compute each met-
ric according to FRAGSTATS defaults.

Returns df – Dataframe with the values computed at the landscape level (one row only) for each
metric (columns)

Return type pd.DataFrame

1.2. Computing metrics data frames 9

PyLandStats Documentation, Release 2.0.0

1.3 Plotting landscape raster

Landscape.plot_landscape(cmap=None, ax=None, legend=False, figsize=None, **show_kws)
Plots the landscape with a categorical legend by means of rasterio.plot.show

Parameters

• cmap (str or ~matplotlib.colors.Colormap, optional) – A Colormap instance

• ax (axis object, optional) – Plot in given axis; if None creates a new figure

• legend (bool, optional) – If True, display the legend

• figsize (tuple of two numeric types, optional) – Size of the figure to
create. Ignored if axis ax is provided

• **show_kws (optional) – Keyword arguments to be passed to rasterio.plot.show

Returns ax – axis with plot data

Return type matplotlib axis

10 Chapter 1. Landscape analysis

CHAPTER

TWO

SPATIOTEMPORAL ANALYSIS

class pylandstats.SpatioTemporalAnalysis(landscapes, dates=None)

__init__(landscapes, dates=None)

Parameters

• landscapes (list-like) – A list-like of Landscape objects or of strings/file ob-
jects/ pathlib.Path objects so that each is passed as the landscape argument of Land-
scape.__init__

• dates (list-like, optional) – A list-like of ints or strings that label the date of
each snapshot of landscapes (for DataFrame indices and plot labels)

compute_class_metrics_df(metrics=None, classes=None, metrics_kws={})
Computes the data frame of class-level metrics, which is multi-indexed by the class and date.

Parameters

• metrics (list-like, optional) – A list-like of strings with the names of the
metrics that should be computed in the context of this analysis case

• classes (list-like, optional) – A list-like of ints or strings with the class val-
ues that should be considered in the context of this analysis case

• metrics_kws (dict, optional) – Dictionary mapping the keyword arguments
(values) that should be passed to each metric method (key), e.g., to exclude the bound-
ary from the computation of total_edge, metric_kws should map the string ‘total_edge’
(method name) to {‘count_boundary’: False}. The default empty dictionary will compute
each metric according to FRAGSTATS defaults.

Returns df – Dataframe with the values computed for each class, date (multi-index) and metric
(columns)

Return type pd.DataFrame

compute_landscape_metrics_df(metrics=None, metrics_kws={})
Computes the data frame of landscape-level metrics, which is indexed by the date.

Parameters

• metrics (list-like, optional) – A list-like of strings with the names of the
metrics that should be computed. If None, all the implemented landscape-level metrics
will be computed.

• metrics_kws (dict, optional) – Dictionary mapping the keyword arguments
(values) that should be passed to each metric method (key), e.g., to exclude the bound-
ary from the computation of total_edge, metric_kws should map the string ‘total_edge’

11

PyLandStats Documentation, Release 2.0.0

(method name) to {‘count_boundary’: False}. The default empty dictionary will compute
each metric according to FRAGSTATS defaults.

Returns df – Dataframe with the values computed at the landscape level for each date (index)
and metric (columns)

Return type pd.DataFrame

plot_landscapes(cmap=None, legend=True, subplots_kws={}, show_kws={}, sub-
plots_adjust_kws={})

Plots each landscape snapshot in a dedicated matplotlib axis by means of the Landscape.plot_landscape
method of each instance

Parameters

• cmap (str or ~matplotlib.colors.Colormap, optional) – A Colormap instance

• legend (bool, optional) – If True, display the legend of the land use/cover color
codes

• subplots_kws (dict, optional) – Keyword arguments to be passed to
plt.subplots

• show_kws (dict, optional) – Keyword arguments to be passed to raste-
rio.plot.show

• subplots_adjust_kws (dict, optional) – Keyword arguments to be passed to
plt.subplots_adjust

Returns fig – The figure with its corresponding plots drawn into its axes

Return type matplotlib.figure.Figure

plot_metric(metric, class_val=None, ax=None, metric_legend=True, metric_label=None, fmt=’–o’,
plot_kws={}, subplots_kws={}, metric_kws={})

Parameters

• metric (str) – A string indicating the name of the metric to plot

• class_val (int, optional) – If provided, the metric will be plotted at the level of
the corresponding class, otherwise it will be plotted at the landscape level

• ax (axis object, optional) – Plot in given axis; if None creates a new figure

• metric_legend (bool, default True) – Whether the metric label should be dis-
played within the plot (as label of the y-axis)

• metric_label (str, optional) – Label of the y-axis to be displayed if met-
ric_legend is True. If the provided value is None, the label will be taken from the settings
module

• fmt (str, default '--o') – A format string for plt.plot

• plot_kws (dict) – Keyword arguments to be passed to plt.plot

• subplots_kws (dict) – Keyword arguments to be passed to plt.subplots, only if no
axis is given (through the ax argument)

• metric_kws (dict) – Keyword arguments to be passed to the method that computes
the metric (specified in the metric argument) for each landscape

Returns ax – Returns the Axes object with the plot drawn onto it

Return type axis object

12 Chapter 2. Spatiotemporal analysis

CHAPTER

THREE

ZONAL ANALYSIS

class pylandstats.ZonalAnalysis(landscape, masks_arr, attribute_name=None, at-
tribute_values=None, **kwargs)

__init__(landscape, masks_arr, attribute_name=None, attribute_values=None, **kwargs)

Parameters

• landscapes (list-like) – A list-like of Landscape objects or of strings/file ob-
jects/ pathlib.Path objects so that each is passed as the landscape argument of Land-
scape.__init__

• masks_arr (list-like or np.ndarray) – A list-like of numpy arrays of shape
(width, height), i.e., of the same shape as the landscape raster image. Each array will
serve to mask the base landscape and define a region of study for which the metrics will
be computed separately. The same information can also be provided as a single array of
shape (num_masks, width, height).

• attribute_name (str, optional) – Name of the attribute that will distinguish
each landscape

• attribute_values (str, optional) – Values of the attribute that correspond to
each of the landscapes

compute_class_metrics_df(metrics=None, classes=None, metrics_kws={})
Computes the data frame of class-level metrics, which is multi-indexed by the class and attribute value.

Parameters

• metrics (list-like, optional) – A list-like of strings with the names of the
metrics that should be computed in the context of this analysis case

• classes (list-like, optional) – A list-like of ints or strings with the class val-
ues that should be considered in the context of this analysis case

• metrics_kws (dict, optional) – Dictionary mapping the keyword arguments
(values) that should be passed to each metric method (key), e.g., to exclude the bound-
ary from the computation of total_edge, metric_kws should map the string ‘total_edge’
(method name) to {‘count_boundary’: False}. The default empty dictionary will compute
each metric according to FRAGSTATS defaults.

Returns df – Dataframe with the values computed for each class, attribute value (multi-index)
and metric (columns)

Return type pd.DataFrame

compute_landscape_metrics_df(metrics=None, metrics_kws={})
Computes the data frame of landscape-level metrics, which is indexed by the attribute value.

13

PyLandStats Documentation, Release 2.0.0

Parameters

• metrics (list-like, optional) – A list-like of strings with the names of the
metrics that should be computed. If None, all the implemented landscape-level metrics
will be computed.

• metrics_kws (dict, optional) – Dictionary mapping the keyword arguments
(values) that should be passed to each metric method (key), e.g., to exclude the bound-
ary from the computation of total_edge, metric_kws should map the string ‘total_edge’
(method name) to {‘count_boundary’: False}. The default empty dictionary will compute
each metric according to FRAGSTATS defaults.

Returns df – Dataframe with the values computed at the landscape level for each attribute value
(index) and metric (columns)

Return type pd.DataFrame

plot_landscapes(cmap=None, legend=True, subplots_kws={}, show_kws={}, sub-
plots_adjust_kws={})

Plots each landscape snapshot in a dedicated matplotlib axis by means of the Landscape.plot_landscape
method of each instance

Parameters

• cmap (str or ~matplotlib.colors.Colormap, optional) – A Colormap instance

• legend (bool, optional) – If True, display the legend of the land use/cover color
codes

• subplots_kws (dict, optional) – Keyword arguments to be passed to
plt.subplots

• show_kws (dict, optional) – Keyword arguments to be passed to raste-
rio.plot.show

• subplots_adjust_kws (dict, optional) – Keyword arguments to be passed to
plt.subplots_adjust

Returns fig – The figure with its corresponding plots drawn into its axes

Return type matplotlib.figure.Figure

plot_metric(metric, class_val=None, ax=None, metric_legend=True, metric_label=None, fmt=’–o’,
plot_kws={}, subplots_kws={}, metric_kws={})

Parameters

• metric (str) – A string indicating the name of the metric to plot

• class_val (int, optional) – If provided, the metric will be plotted at the level of
the corresponding class, otherwise it will be plotted at the landscape level

• ax (axis object, optional) – Plot in given axis; if None creates a new figure

• metric_legend (bool, default True) – Whether the metric label should be dis-
played within the plot (as label of the y-axis)

• metric_label (str, optional) – Label of the y-axis to be displayed if met-
ric_legend is True. If the provided value is None, the label will be taken from the settings
module

• fmt (str, default '--o') – A format string for plt.plot

• plot_kws (dict) – Keyword arguments to be passed to plt.plot

14 Chapter 3. Zonal analysis

PyLandStats Documentation, Release 2.0.0

• subplots_kws (dict) – Keyword arguments to be passed to plt.subplots, only if no
axis is given (through the ax argument)

• metric_kws (dict) – Keyword arguments to be passed to the method that computes
the metric (specified in the metric argument) for each landscape

Returns ax – Returns the Axes object with the plot drawn onto it

Return type axis object

class pylandstats.BufferAnalysis(landscape, base_mask, buffer_dists, buffer_rings=False,
base_mask_crs=None, landscape_crs=None, land-
scape_transform=None)

__init__(landscape, base_mask, buffer_dists, buffer_rings=False, base_mask_crs=None, land-
scape_crs=None, landscape_transform=None)

Parameters

• landscapes (list-like) – A list-like of Landscape objects or of strings/file ob-
jects/ pathlib.Path objects so that each is passed as the landscape argument of Land-
scape.__init__

• base_mask (shapely geometry or geopandas GeoSeries) – Geometry
that will serve as a base mask to buffer around

• buffer_dists (list-like) – Buffer distances

• buffer_rings (bool, default False) – If False, each buffer zone will consist
of the whole region that lies within the respective buffer distance around the base mask. If
True, buffer zones will take the form of rings around the base mask.

• base_mask_crs (dict, optional) – The coordinate reference system of the base
mask. Required if the base mask is a shapely geometry or a geopandas GeoSeries without
the crs attribute set

• landscape_crs (dict, optional) – The coordinate reference system of the land-
scapes. Required if the passed-in landscapes are Landscape objects, ignored if they are
paths to GeoTiff rasters that already contain such information.

• landscape_transform (affine.Affine) – Transformation from pixel coordi-
nates to coordinate reference system. Required if the passed-in landscapes are Landscape
objects, ignored if they are paths to GeoTiff rasters that already contain such information.

compute_class_metrics_df(metrics=None, classes=None, metrics_kws={})
Computes the data frame of class-level metrics, which is multi-indexed by the class and buffer distance.

Parameters

• metrics (list-like, optional) – A list-like of strings with the names of the
metrics that should be computed in the context of this analysis case

• classes (list-like, optional) – A list-like of ints or strings with the class val-
ues that should be considered in the context of this analysis case

• metrics_kws (dict, optional) – Dictionary mapping the keyword arguments
(values) that should be passed to each metric method (key), e.g., to exclude the bound-
ary from the computation of total_edge, metric_kws should map the string ‘total_edge’
(method name) to {‘count_boundary’: False}. The default empty dictionary will compute
each metric according to FRAGSTATS defaults.

Returns df – Dataframe with the values computed for each class, buffer distance (multi-index)
and metric (columns)

15

PyLandStats Documentation, Release 2.0.0

Return type pd.DataFrame

compute_landscape_metrics_df(metrics=None, metrics_kws={})
Computes the data frame of landscape-level metrics, which is indexed by the buffer distance.

Parameters

• metrics (list-like, optional) – A list-like of strings with the names of the
metrics that should be computed. If None, all the implemented landscape-level metrics
will be computed.

• metrics_kws (dict, optional) – Dictionary mapping the keyword arguments
(values) that should be passed to each metric method (key), e.g., to exclude the bound-
ary from the computation of total_edge, metric_kws should map the string ‘total_edge’
(method name) to {‘count_boundary’: False}. The default empty dictionary will compute
each metric according to FRAGSTATS defaults.

Returns df – Dataframe with the values computed at the landscape level for each buffer distance
(index) and metric (columns)

Return type pd.DataFrame

plot_landscapes(cmap=None, legend=True, subplots_kws={}, show_kws={}, sub-
plots_adjust_kws={})

Plots each landscape snapshot in a dedicated matplotlib axis by means of the Landscape.plot_landscape
method of each instance

Parameters

• cmap (str or ~matplotlib.colors.Colormap, optional) – A Colormap instance

• legend (bool, optional) – If True, display the legend of the land use/cover color
codes

• subplots_kws (dict, optional) – Keyword arguments to be passed to
plt.subplots

• show_kws (dict, optional) – Keyword arguments to be passed to raste-
rio.plot.show

• subplots_adjust_kws (dict, optional) – Keyword arguments to be passed to
plt.subplots_adjust

Returns fig – The figure with its corresponding plots drawn into its axes

Return type matplotlib.figure.Figure

plot_metric(metric, class_val=None, ax=None, metric_legend=True, metric_label=None, fmt=’–o’,
plot_kws={}, subplots_kws={}, metric_kws={})

Parameters

• metric (str) – A string indicating the name of the metric to plot

• class_val (int, optional) – If provided, the metric will be plotted at the level of
the corresponding class, otherwise it will be plotted at the landscape level

• ax (axis object, optional) – Plot in given axis; if None creates a new figure

• metric_legend (bool, default True) – Whether the metric label should be dis-
played within the plot (as label of the y-axis)

• metric_label (str, optional) – Label of the y-axis to be displayed if met-
ric_legend is True. If the provided value is None, the label will be taken from the settings
module

16 Chapter 3. Zonal analysis

PyLandStats Documentation, Release 2.0.0

• fmt (str, default '--o') – A format string for plt.plot

• plot_kws (dict) – Keyword arguments to be passed to plt.plot

• subplots_kws (dict) – Keyword arguments to be passed to plt.subplots, only if no
axis is given (through the ax argument)

• metric_kws (dict) – Keyword arguments to be passed to the method that computes
the metric (specified in the metric argument) for each landscape

Returns ax – Returns the Axes object with the plot drawn onto it

Return type axis object

17

PyLandStats Documentation, Release 2.0.0

18 Chapter 3. Zonal analysis

CHAPTER

FOUR

SPATIOTEMPORAL BUFFER ANALYSIS

class pylandstats.SpatioTemporalBufferAnalysis(landscapes, base_mask,
buffer_dists, buffer_rings=False,
base_mask_crs=None, land-
scape_crs=None, land-
scape_transform=None, dates=None)

__init__(landscapes, base_mask, buffer_dists, buffer_rings=False, base_mask_crs=None, land-
scape_crs=None, landscape_transform=None, dates=None)

Parameters

• landscapes (list-like) – A list-like of Landscape objects or of strings/file ob-
jects/ pathlib.Path objects so that each is passed as the landscape argument of Land-
scape.__init__

• base_mask (shapely geometry or geopandas GeoSeries) – Geometry
that will serve as a base mask to buffer around

• buffer_rings (bool, default False) – If False, each buffer zone will consist
of the whole region that lies within the respective buffer distance around the base mask. If
True, buffer zones will take the form of rings around the base mask.

• base_mask_crs (dict, optional) – The coordinate reference system of the base
mask. Required if the base mask is a shapely geometry or a geopandas GeoSeries without
the crs attribute set

• landscape_crs (dict, optional) – The coordinate reference system of the land-
scapes. Required if the passed-in landscapes are Landscape objects, ignored if they are
paths to GeoTiff rasters that already contain such information.

• landscape_transform (affine.Affine) – Transformation from pixel coordi-
nates to coordinate reference system. Required if the passed-in landscapes are Landscape
objects, ignored if they are paths to GeoTiff rasters that already contain such information.

• dates (list-like, optional) – A list-like of ints or strings that label the date of
each snapshot of landscapes (for DataFrame indices and plot labels)

compute_class_metrics_df(metrics=None, classes=None, metrics_kws={})
Computes the data frame of class-level metrics, which is multi-indexed by the buffer distance, class and
date.

Parameters

• metrics (list-like, optional) – A list-like of strings with the names of the
metrics that should be computed in the context of this analysis case

19

PyLandStats Documentation, Release 2.0.0

• classes (list-like, optional) – A list-like of ints or strings with the class val-
ues that should be considered in the context of this analysis case

• metrics_kws (dict, optional) – Dictionary mapping the keyword arguments
(values) that should be passed to each metric method (key), e.g., to exclude the bound-
ary from the computation of total_edge, metric_kws should map the string ‘total_edge’
(method name) to {‘count_boundary’: False}. The default empty dictionary will compute
each metric according to FRAGSTATS defaults.

Returns df – Dataframe with the values computed for each buffer distance, class, distance
(multi-index) and metric (columns)

Return type pd.DataFrame

compute_landscape_metrics_df(metrics=None, metrics_kws={})
Computes the data frame of landscape-level metrics, which is multi-indexed by the buffer distance and
date.

Parameters

• metrics (list-like, optional) – A list-like of strings with the names of the
metrics that should be computed. If None, all the implemented landscape-level metrics
will be computed.

• metrics_kws (dict, optional) – Dictionary mapping the keyword arguments
(values) that should be passed to each metric method (key), e.g., to exclude the bound-
ary from the computation of total_edge, metric_kws should map the string ‘total_edge’
(method name) to {‘count_boundary’: False}. The default empty dictionary will compute
each metric according to FRAGSTATS defaults.

Returns df – Dataframe with the values computed at the landscape level for each buffer distance,
date (multi-index) and metric (columns)

Return type pd.DataFrame

plot_landscapes(cmap=None, legend=True, subplots_kws={}, show_kws={}, sub-
plots_adjust_kws={})

Plots each landscape snapshot in a dedicated matplotlib axis by means of the Landscape.plot_landscape
method of each instance

Parameters

• cmap (str or ~matplotlib.colors.Colormap, optional) – A Colormap instance

• legend (bool, optional) – If True, display the legend of the land use/cover color
codes

• subplots_kws (dict, optional) – Keyword arguments to be passed to
plt.subplots

• show_kws (dict, optional) – Keyword arguments to be passed to raste-
rio.plot.show

• subplots_adjust_kws (dict, optional) – Keyword arguments to be passed to
plt.subplots_adjust

Returns fig – The figure with its corresponding plots drawn into its axes

Return type matplotlib.figure.Figure

plot_metric(metric, class_val=None, ax=None, metric_legend=True, metric_label=None,
buffer_dist_legend=True, fmt=’–o’, plot_kws={}, subplots_kws={})

Parameters

20 Chapter 4. Spatiotemporal buffer analysis

PyLandStats Documentation, Release 2.0.0

• metric (str) – A string indicating the name of the metric to plot

• class_val (int, optional) – If provided, the metric will be plotted at the level of
the corresponding class, otherwise it will be plotted at the landscape level

• ax (axis object, optional) – Plot in given axis; if None creates a new figure

• metric_legend (bool, default True) – Whether the metric label should be dis-
played within the plot (as label of the y-axis)

• metric_label (str, optional) – Label of the y-axis to be displayed if met-
ric_legend is True. If the provided value is None, the label will be taken from the settings
module

• buffer_dist_legend (bool, default True) – Whether a legend linking each
plotted line to a buffer distance should be displayed within the plot

• fmt (str, default '--o') – A format string for plt.plot

• plot_kws (dict) – Keyword arguments to be passed to plt.plot

• subplots_kws (dict) – Keyword arguments to be passed to plt.subplots, only if no
axis is given (through the ax argument)

Returns ax – Returns the Axes object with the plot drawn onto it

Return type axis object

21

PyLandStats Documentation, Release 2.0.0

22 Chapter 4. Spatiotemporal buffer analysis

CHAPTER

FIVE

USING PYLANDSTATS

The easiest way to install PyLandStats is with conda:

$ conda install -c conda-forge pylandstats

which will install PyLandStats and all of its dependencies. Alternatively, you can install PyLandStats using pip:

$ pip install pylandstats

Nevertheless, note that the BufferAnalysis and SpatioTemporalBufferAnalysis classes make use of [geopandas](https:
//github.com/geopandas/geopandas), which cannot be installed with pip. If you already have [the dependencies for
geopandas](https://geopandas.readthedocs.io/en/latest/install.html#dependencies) installed in your system, you might
then install PyLandStats with the geo extras as in:

$ pip install pylandstats[geo]

and you will be able to use the BufferAnalysis and SpatioTemporalBufferAnalysis classes (without having to use conda).

23

https://github.com/geopandas/geopandas
https://github.com/geopandas/geopandas
https://geopandas.readthedocs.io/en/latest/install.html#dependencies

PyLandStats Documentation, Release 2.0.0

24 Chapter 5. Using PyLandStats

CHAPTER

SIX

INDICES AND TABLES

25

PyLandStats Documentation, Release 2.0.0

26 Chapter 6. Indices and tables

INDEX

Symbols
__init__() (pylandstats.BufferAnalysis method), 15
__init__() (pylandstats.SpatioTemporalAnalysis

method), 11
__init__() (pyland-

stats.SpatioTemporalBufferAnalysis method),
19

__init__() (pylandstats.ZonalAnalysis method), 13

A
area() (pylandstats.Landscape method), 3

B
BufferAnalysis (class in pylandstats), 15

C
compute_class_metrics_df() (pyland-

stats.BufferAnalysis method), 15
compute_class_metrics_df() (pyland-

stats.Landscape method), 9
compute_class_metrics_df() (pyland-

stats.SpatioTemporalAnalysis method), 11
compute_class_metrics_df() (pyland-

stats.SpatioTemporalBufferAnalysis method),
19

compute_class_metrics_df() (pyland-
stats.ZonalAnalysis method), 13

compute_landscape_metrics_df() (pyland-
stats.BufferAnalysis method), 16

compute_landscape_metrics_df() (pyland-
stats.Landscape method), 9

compute_landscape_metrics_df() (pyland-
stats.SpatioTemporalAnalysis method), 11

compute_landscape_metrics_df() (pyland-
stats.SpatioTemporalBufferAnalysis method),
20

compute_landscape_metrics_df() (pyland-
stats.ZonalAnalysis method), 13

compute_patch_metrics_df() (pyland-
stats.Landscape method), 9

contagion() (pylandstats.Landscape method), 8

E
edge_density() (pylandstats.Landscape method), 7
euclidean_nearest_neighbor() (pyland-

stats.Landscape method), 5

F
fractal_dimension() (pylandstats.Landscape

method), 4

L
landscape_shape_index() (pyland-

stats.Landscape method), 8
largest_patch_index() (pylandstats.Landscape

method), 6

N
number_of_patches() (pylandstats.Landscape

method), 6

P
patch_density() (pylandstats.Landscape method),

6
perimeter() (pylandstats.Landscape method), 4
perimeter_area_ratio() (pylandstats.Landscape

method), 4
plot_landscape() (pylandstats.Landscape

method), 10
plot_landscapes() (pylandstats.BufferAnalysis

method), 16
plot_landscapes() (pyland-

stats.SpatioTemporalAnalysis method), 12
plot_landscapes() (pyland-

stats.SpatioTemporalBufferAnalysis method),
20

plot_landscapes() (pylandstats.ZonalAnalysis
method), 14

plot_metric() (pylandstats.BufferAnalysis method),
16

plot_metric() (pylandstats.SpatioTemporalAnalysis
method), 12

27

PyLandStats Documentation, Release 2.0.0

plot_metric() (pyland-
stats.SpatioTemporalBufferAnalysis method),
20

plot_metric() (pylandstats.ZonalAnalysis method),
14

proportion_of_landscape() (pyland-
stats.Landscape method), 5

S
shannon_diversity_index() (pyland-

stats.Landscape method), 8
shape_index() (pylandstats.Landscape method), 4
SpatioTemporalAnalysis (class in pylandstats),

11
SpatioTemporalBufferAnalysis (class in py-

landstats), 19

T
total_area() (pylandstats.Landscape method), 5
total_edge() (pylandstats.Landscape method), 7

Z
ZonalAnalysis (class in pylandstats), 13

28 Index

	Landscape analysis
	Spatiotemporal analysis
	Zonal analysis
	Spatiotemporal buffer analysis
	Using PyLandStats
	Indices and tables
	Index

